
OSCAR Parallelizing Compiler and API for
Real-time Low Power Heterogeneous Multicores

Akihiro Hayashi, Mamoru Shimaoka, Hiroki Mikmi, Masayoshi Mase, Yasutaka
Wada, Jun Shirako, Keiji Kimura, and Hironori Kasahara

Department of Computer Science and Engineering, Waseda University,
3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan,

{ahayashi,shimaoka,hiroki,mase,
yasutaka,shirako,kimura}@kasahara.cs.waseda.ac.jp,

kasahara@waseda.jp,
http://www.kasahara.cs.waseda.ac.jp/

Abstract. Heterogeneous multicores have been attracting much atten-
tion to attain high performance keeping power consumption low in wide
spread of areas. However, heterogeneous multicores force programmers
very difficult programming. The long application program development
period lowers product competitiveness.
In order to overcome such a situation, this paper describes OSCAR par-
allelizing compiler which bridges a gap between programmers and hetero-
geneous multicores. In particular, this paper describes the compilation
framework based on OSCAR compiler and OSCAR API. OSCAR com-
piler and OSCAR API realize coarse grain task parallel processing, data
transfer using a DMA controller, power reduction control from user pro-
grams with DVFS and clock gating on various heterogeneous multicores
from different vendors.
This paper also evaluates processing performance and the power reduc-
tion by the proposed framework on a newly developed 15 core hetero-
geneous multicore chip named RP-X integrating 8 general purpose pro-
cessor cores and 3 types of accelerator cores. The compiler using the
OSCAR API gives us speedups up to 32x for an optical flow program
with 8 general purpose processor cores and 4 DRP(Dynamically Recon-
figurable Processor) accelerator cores with accelerator library and 12x
with a special purpose compiler for the DRP against sequential execu-
tion by a single processor core. Also the compiler succeeded 80% of power
reduction on 12 cores composed of the 8 general purpose cores and 4 DRP
cores by the automatic DVFS control for the real-time AAC encoding.

Keywords: Heterogeneous Multicore, Parallelizing Compiler, API

1 Introduction

There has been a growing interest in heterogeneous multicores which integrate
special purpose accelerator cores in addition to general purpose processor cores
on a chip. One of the reason for this trend is because heterogeneous multicores

allow us to attain high performance with low frequency and low power consump-
tion. Various semiconductor vendors have released heterogeneous multicores such
as CELL BE[11], RP1[16] and RP-X[17].

However, the softwares for heterogeneous multicores generally require large
development efforts such as the decomposition of a program into tasks, the im-
plementation of accelerator code, the scheduling of the tasks onto general pur-
pose processors and accelerators, and the insertion of synchronization and data
transfer codes. These software development periods are required even for expert
programmers.

Recent many studies have tried to handle this software development issue.
For example, NVIDIA and Khronos Group introduced CUDA[3] and OpenCL[6].
Also, PGI accelerator compiler[15] and HMPP[2] provides a high-level program-
ming model for accelerators. However, these works focus on facilitating the de-
velopment for accelerators. Programmers need to distribute tasks among general
purpose processors and accelerator cores by hand. In terms of workload distribu-
tion, Qilin[8] automatically decides which task should be executed on a general
purpose processor or an accelerator at runtime. However, programmers still need
to parallelize a program by hand. While these works rely on programmers’ skills,
CellSs[1] performs an automatic parallelization of a subset of sequential C pro-
gram with data flow annotations on CELL BE. CellSs automatically schedules
tasks onto processor elements at runtime. The task scheduler of CellSs, how-
ever, is implemented as a homogeneous task scheduler, namely the scheduler is
executed on PPE and just distributes tasks among SPEs.

In the light of above facts, further explorations are needed since it is the
responsibility of programmers to parallelize a program and to optimize a data
transfer and a power consumption for heterogeneous multicores. One of our goals
is to realize a fully automatic parallelization of a sequential C or Fortran77 pro-
gram for heterogeneous multicores. We have been developing OSCAR paralleling
compiler for homogeneous multicores such as SMP servers and real-time multi-
cores[4, 7, 9]. These works realize automatic parallelization of programs written
in Fortran77 or Parallelizable C, a kind of C programming style for paralleliz-
ing compiler, and power reduction with the support of both OSCAR compiler
and OSCAR API(Application Program Interface)[5], which supports partioned
global address space(PGAS) including local memory, distributed shared memory
centrized shared memory, DMA controller. This paper describes an automatic
parallelization using the API for a real heterogeneous multicore chip. This paper
makes the following contributions:

– A proposal in which the compilation flow of the OSCAR compiler and OS-
CAR API do not depend on the processor configuration, or the number of
general-purpose cores and accelerators.

– A proposal, which enables the OSCAR compiler to perform an automatic
parallelization for heterogeneous multicore by utilizing existing tools and
libraries for accelerators.

– An evaluation of the processing performance and the power efficiency us-
ing widely used media applications including motion-tracking algorithm and

Fig. 1. OSCAR API Applicable heterogeneous multicore architecture

audio encoding software on newly developed RP-X heterogeneous multicore
chip.

This paper firstly defines an general-purpose architecture and compilation flow in
Section 2. Secondly, we defines distinct responsibilities among these tool chains
and interface among them by extending OSCAR API in Section 3.

2 OSCAR API Applicable Heterogeneous Multicore
Architecture and Overview of the Compilation flow

This section defines both target architecture and compilation flow of the pro-
posed framework. In this paper, define a term “controller” as a general purpose
processor that controls an accelerator, that is to say, it performs part of coarse-
grain task and data transfers from/to the accelerator and offload the task to the
accelerator.

2.1 OSCAR API Applicable Heterogeneous Multicore Architecture

This section defines “OSCAR API Applicable Heterogeneous Multicore Archi-
tecture” shown in Fig.1.. The architecture is composed of general purpose pro-
cessors, accelerators(ACCs), direct memory access controller(DMAC), on-chip
centralized shared memory(CSM), and off-chip CSM. Some accelerators may
have its own controller, or general purpose processor. Both general purpose pro-
cessors and accelerators with controller may have a local data memory (LDM),
a distributed shared memory (DSM), a data transfer unit (DTU), a frequency
voltage control registers (FVR), an instruction cache memory and a data cache
memory. The local data memory keeps private data. The distributed shared

Fig. 2. Compilation flow of the proposed framework

memory is a dual port memory, which enables point-to-point direct data transfer
and low-latency synchronization among processors. Each existing heterogeneous
multicore can be seen such as CELL BE[11], MP211[13] and RP1[16] as a subset
of OSCAR API applicable architecture. Thus, OSCAR API can support such
chips and a subset of OSCAR API applicable heterogeneous multicore.

2.2 Compilation Flow

Fig.2. shows the compilation flow of the proposed OSCAR heterogeneous com-
piler framework. The input is a sequential program written in Parallelizable C or
Fortran77 and the output is an executable for a target heterogeneous multicore.
The following describes each step in the proposed compilation flow.

Step 1: Accelerator compilers or programmers insert hint directives immedi-
ately before loops or function calls , which can be executed on the accelera-
tor, in a sequential program.

Step 2: OSCAR compiler parallelizes the source program considering with hint
directives: the compiler schedules coarse-grain tasks[14] to processor or ac-
celerator cores and apply the low power control[7]. Then, the compiler gener-
ates a parallelized C or Fortran program for general purpose processors and
accelerator cores by using OSCAR API. At that time, the compiler gener-
ates C source codes as separate files for accelerator cores. Each file includes
functions to be executed on accelerators when a function is scheduled onto
accelerator by the compiler.

Step 3: Each accelerator compiler generates objects for its own target acceler-
ator. Note that each accelerator compiler also generates both data transfer
code between controller and accelerator, and accelerator invocation code.

Step 4: An API analyzer prepared for each heterogeneous multicore translates
OSCAR APIs into runtime library calls, such as pthread library. Afterwards,
an ordinary sequential compiler for each processor from each vender gener-
ates an executable.

It is important that the framework also allows programmers to utilize existing
hand-tuned libraries for the specific accelerator. This paper defines a term “hand-
tuned library” as an accelerator library which includes computation body on

int main() {

 int i, x[N], var1 = 0;

 /* loop1 */

 for (i = 0; i < N; i++) { x[i] = i; }

 /* loop2 */

#pragma oscar_hint accelerator_task (ACCa) \

 cycle(1000,((OSCAR_DMAC()))) workmem(OSCAR_LDM(), 10)

 for (i = 0; i < N; i++) { x[i]++; }

 /* function3 */

#pragma oscar_hint accelerator_task (ACCb) \

 cycle(100, ((OSCAR_DTU()))) in(var1,x[2:11]) out(x[2:11])

 call_FFT(var1, x);

 return 0;

}

void call_FFT(int var, int* x) {

#pragma oscar_comment "XXXXX"

 FFT(var, x); //hand-tuned library call

}

Fig. 3. Example of source code with hint directives

the specific accelerator and both data transfer code between general purpose
processors and accelerators and accelerator invocation code.

3 A Compiler Framework for Heterogeneous Multicores

This section describes the detail of OSCAR compiler and OSCAR API.

3.1 Hint Directives for OSCAR Compiler

This subsection explains the hint directives for OSCAR compiler that advice OS-
CAR compiler which parts of the program can be executed by which accelerator
core.

Fig.3. shows an example code. As shown in Fig.3., there are two types of hint
directives inserted to a sequential C program, namely “accelerator task” and “os-
car comment”. In this example, there are “#pragma oscar hint accelerator task
(ACCa) cycle(1000, ((OSCAR DMAC()))) workmem(OSCAR LDM(), 10)” and
“#pragma oscar hint accelerator task (ACCb) cycle(100, ((OSCAR DTU())))
in(var1, x[2:11]) out(x[2:11])”. In these directives, accelerators represented as
“ACCa” and “ACCb” is able to execute a loop named “loop2” and a function
named “function3”, respectively. The hint directive for “loop2” specifies that
“loop2” requires 1000 cycles including the cost of a data transfer performed by
DMAC if the loop is processed by “ACCa”. This directive also specifies that 10
bytes in local data memory are required in order to control “ACCa”. Similarly,
for “function3”, it takes 100 cycles including the cost of a data transfer by DTU.
Input variables are scalar variable “var1” and array variable “x” ranging 2 to
11. Also, output variable is array variable “x”. “oscar comment” directive is in-
serted so that either programmers or accelerator compilers give a comment to
accelerator compiler through OSCAR compiler.

3.2 OSCAR Parallelizing Compiler

This subsection describes OSCAR compiler.
First of all, the compiler decomposes a program into coarse grain tasks,

namely macro-tasks (MTs), such as basic block (BPA), loop (RB), and func-
tion call or subroutine call (SB). Then, the compiler analyzes both the control
flow and the data dependencies among MTs and represents them as a macro-
flow-graph (MFG) and macro-task-graph (MTG)[4]. When the compiler cannot
analyze the input source for some reason, like hand-tuned accelerator library
call, “in/out” clause of “accelerator task” gives the data dependency informa-
tion to OSCAR compiler. Then, the compiler calculates the cost of MT and finds
the layer which is expected to apply coarse-grain parallel processing most effec-
tively. “cycle” clause of “accelerator task” tells the cost of accelerator execution
to the compiler. Secondly, the task scheduler of the compiler statically schedules
macro-tasks to each core[14]. Thirdly, the compiler tries to minimize total power
consumption by changing frequency and voltage(DVFS) or shutting power down
the core during the idle time considering transition time[12]. The compiler de-
termines suitable voltage and frequency for each macro-task based on the result
of static task assignment in order to satisfy the deadline for real-time execution.
Finally, the compiler generates parallelized C or Fortran program with OSCAR
API. OSCAR compiler generates the function which includes original source for
accelerator. Generation of data transfer codes and accelerator invocation code
is responsible for accelerator compiler.

OSCAR compiler uses processor configurations, such as number of cores,
cache or local memory size, available power control mechanisms, and so on. This
information is provided by compiler options.

3.3 OSCAR API

This subsection describes the overview of OSCAR API. Fig.4 shows the brief
overview of the compilation flow using OSCAR API. As we described in Sec-
tion 2.2, OSCAR compiler generates the parallelized Fortran or C program
with OSCAR API and API analyzer translates OSCAR APIs into runtime li-
brary calls, such as pthread library. Afterwards, an sequential compiler gener-
ates an executable. That’s why OSCAR API is multiplatform multicore API.
Fig.5 shows the list of OSCAR API. OSCAR API consists of parallel execution
APIs, memory mapping APIs, data transfer APIs, power control APIs, synchro-
nization APIs, timer APIs, cache control APIs and accelerator APIs. Parallel
execution APIs realize thread creation and mutual exclusion by using “parallel
sections”, “flush”, “critical” on the target platform. All API except “execu-
tion” derived from OpenMP. Memory mapping APIs enable OSCAR compiler
to map variables and arrays to specified memory including local memory, dis-
tributed shared memory, and centrilized shared memory. OSCAR compiler also
inserts codes which perform data transfer by using data transfer unit by using
“dma tranfer”, “dma contiguous parameter” and “dma stride parameter”. The
completion of the transfer is to be notified and checked by using “dma flag check”

Backend compiler

API
Analyzer

Existing
sequential

compiler

Application Program
Fortran or Parallelizable C

(Sequential program)

Machine
codes

Proc0

Thread 0

Machine
codesBackend compiler

API
Analyzer

Existing
sequential

compiler

Code with

directives

Proc1

Thread 1

Code with

directives

E
xe

cu
ta

b
le

 o
n
 v

ar
io

u
s

m
u
lt
ic

o
re

s

Backend compiler

OpenMP
Compiler

Fig. 4. Compilation flow of OSCAR API

Fig. 5. API List of OSCAR API 2.0

and “dma flag send”. Frequency and voltage of chip can be changed and monitered
by using “fvcontrol” and “get fvstatus”. Synchronization API and Timer API
realize hardware-supported barrier synchronization for low-latency synchroniza-
tion and timer monitering for real-time execution, respectively. Cache control
APIs supports non-coherent cache architechtures which do not have hardware
supported cache coherent mechanism.

3.4 The Extension of OSCAR API for Heterogeneous Multicores

This subsection describes API extension for heterogeneous multicores to be the
output of OSCAR compiler. Thee extension is very simple. Only one directive
“accelerator task entry” is added to OSCAR API. This directive specifies the
function’s name where general purpose processor invokes an accelerator.

Let us consider an example where the compiler parallelizes the program in
Fig.3. We assume a target multicore includes two general purpose processors,

int main() {

#pragma omp parallel sections

 {

#pragma omp section

 { MAIN_CPU0(); }

#pragma omp section

 { MAIN_CPU1(); }

#pragma omp section

 { MAIN_CPU2(); }

 }

 return 0;

}

int MAIN_CPU1() {

 ...

 oscartask_CTRL1_call_FFT(var1, &x);

 ...

}

int MAIN_CPU2() {

 ...

 oscartask_CTRL2_call_loop2(&x);

 ...

}

#pragma oscar accelerator_task_entry controller(2) \

 oscartask_CTRL2_loop2

void oscartask_CTRL2_loop2(int *x) {

 int i;

 for (i = 0; i <= 9; i += 1) { x[i]++; }

}

#pragma oscar accelerator_task_entry controller(1) \

 oscartask_CTRL1_call_FFT

void oscartask_CTRL1_call_FFT(int var1, int *x) {

#pragma oscar_comment "XXXXX"

 oscarlib_CTRL1_ACCEL3_FFT(var1, x);

}Source Code for CPUs

Source Code for ACCa

Source Code for ACCb

Fig. 6. Example of parallelized source code with OSCAR API

one ACCa as an accelerator with its controller and one ACCb as an accelera-
tor without its controller. One of general purpose processors, namely CPU1, is
used as controller for ACCb in this case. Fig.6. shows as example of the paral-
lelized C code with OSCAR heterogeneous directive generated by OSCAR com-
piler. As shown in Fig.6., functions named “MAIN CPU0()”, “MAIN CPU1()”
and “MAIN CPU2()” are invoked in omp parallel sections. These functions are
executed on general purpose processors. In addition, hand-tuned library “oscar-
task CTRL1 call FFT()” executed on ACCa is called by controller “MAIN CPU1()”.
“MAIN CPU2” also calls kernel function “oscartask CTRL2 call loop2()” exe-
cuted on ACCb. “accelerator task entry” directive specifies these two functions.
“controller” clause of the directive specifies id of general purpose CPU which
controls the accelerator. Note that there exists “oscar comment” directives at
same place shown in Fig.3.. “oscar comment” directives may be used to give
accelerator specific directives, such as PGI accelerator directives, to accelerator
compilers. Afterwards, accelerator compilers generates the source code for the
controller and objects for the accelerator, interpreting these directives.

4 Performance Evaluations on RP-X

This section evaluates the performance of the proposed framework on 15 core
heterogeneous multicore RP-X[17] using media applications.

4.1 Evaluation Environment

The RP-X processor is composed of eight 648MHz SH-4A general purpose pro-
cessor cores and four 324MHz FE-GA accelerator cores, the other dedicated
hardware IP such as matrix processor “MX-2” and video processing unit “VPU5”,
as shown in Fig.7.. Each SH-4A core consists of a 32KB instruction cache, a 32KB
data cache, a 16KB local instruction/data memory(ILM and DLM in Fig.7.), a

SH-X3 SH-X3 SH-X3 SH-4A

I$ D$

ILM

CPU FPU

URAM

CRU

DLM

SH-4A

DTU

MX2
#0-1

SHPB

HPB
LBSC SATA SPU2 PCI

exp

DBSC
#0

DMAC
#0

DMAC
#1

DBSC
#1

FE
#0-3 VPU5

SHwy#0(Address=40,Data=128) SHwy#1(Address=40,Data=128)

SHwy#2(Address=32,Data=64)

SNC

SH-X3 SH-X3 SH-X3 SH-4A

L2C

Fig. 7. RP-X heterogeneous multicore for consumer electronics

64KB distributed shared memory(URAM in Fig.7) and a data transfer unit. Fur-
thermore, FE-GA is used as an accelerator without controller because FE-GA
is directly connected with on-chip interconnection network named “SHwy#1”,
a split transaction bus. With regard to the power reduction control mechanism
of RP-X, DVFS and clock gating for each SH-4A core can be controlled inde-
pendently using special power control register by a user. DVFS for FE-GAs can
be controlled by a user. This hardware mechanism is low overhead, for example
frequency change needs a few clocks. This paper evaluates both generating the
object code by accelerator compiler and using the hand-tuned library on RP-X
processor. We evaluate the processing performance and the power consumption
of the proposed framework using upto eight SH-4A cores and four FE-GA cores.

4.2 Performance by OSCAR compiler with Accelerator Compiler

An “optical flow” application from OpenCV[10] is used for this evaluation. The
algorithm is a type of object tracking system, which calculates velocity field
between two images. The program is modified in Parallelizable C[9] in this eval-
uation. This program consists of the following parts: dividing the image into
16x16 pixel blocks, searching a similar block in the next image for every block in
the current image, shifting 16 pixels and generating the output. OSCAR com-
piler parallelizes the loop which searches a similar block in the next image. In
addition, FE-GA compiler developed by Hitachi analyzed that the sum of abso-
lute difference(SAD), which occupies a large part of the program execution time,
is to be executed on FE-GA. FE-GA compiler also automatically inserts the hint
directives to the C program. OSCAR compiler generates parallel C program with
OSCAR heterogeneous API. The parallel program is translated into parallel ex-
ecutable binary by using API analyzer which translates the directives to library
calls and sequential compiler and FE-GA compiler translates the program parts
in the accelerator files to FE-GA binary. Input images are two 320x352 bitmap
images. Data transfer between SH-4A and FE-GA is performed by SH-4A via
data cache.

0

3.75

7.50

11.25

15.00

1SH 2SH 4SH 8SH 2SH+1FE 4SH+2FE 8SH+4FE

12.36

5.48

2.65

5.64

3.46

1.90
1.00

Fig. 8. Performance by OSCAR compiler and FE-GA Compiler(Optical Flow)

Fig.8. shows parallel processing performance of the optical flow on RP-X.
The horizontal axis shows the processor configurations. For example, 8SH+4FE
represents for the configuration with eight SH-4A general purpose cores and four
FE-GA accelerator cores. The vertical axis shows the speedup against the se-
quential execution by a SH-4A core. As shown in Fig.8, the proposed compilation
framework achieves speedups of up to 12.36x with 8SH+4FE.

4.3 Performance by OSCAR compiler and Hand-tuned Library

In this evaluation, we evaluate two applications written in Parallelizable C. The
one is the optical flow from Hitachi Ltd. and Tohoku university, and the other
is AAC encoder available on a market from Renesas Technology.

There are a few differences between the optical flow program used in this
section and the program in Section4.2: In the optical flow program for this sec-
tion, shift amount is 1 pixel, the input of the application is a sequence of images,
and hand-tuned library for FE-GA is utilized. OSCAR compiler parallelizes the
same loop, which is shown in the previous subsection. The hand-tuned library,
which executes 81 SAD functions in parallel, is used for FE-GA. The hint direc-
tives are inserted to the parallelizable C program. OSCAR compiler generates
parallel C program with OSCAR API or directives for these library function
calls. The directives in the parallel program is translated to library calls by us-
ing API analyzer. Then, sequential compiler generates the executables linking
with hand-tuned library for SAD. Input image size, number of frames and block
size is 352x240, 450, 16x16, respectively. Data transfer between SH-4A and FE-
GA is performed by SH-4A via data cache. AAC encoding program is based on
the AAC-LC encode program provided by Renesas Technology and Hitachi Ltd.
This program consists of filter bank, midside(MS) stereo, quantization and huff-
man coding. OSCAR compiler parallelizes the main loop which encodes a frame.
The hand-tuned library for filter bank, MS stereo and quantization is used for
FE-GA. Data transfer between SH-4A and FE-GA is performed by DTU via
distributed shared memory.

0

10

20

30

40

1SH 2SH 4SH 8SH 2SH+1FE 4SH+2FE 8SH+4FE

32.65

26.71

18.85

5.40
3.092.29

1.00

Fig. 9. Performance by OSCAR compiler and Hand-tuned Library(Optical Flow)

0

5

10

15

20

1SH 2SH 4SH 8SH 2SH+1FE 4SH+2FE 8SH+4FE

16.08

8.77

4.60

6.33

3.86

1.98
1.00

Fig. 10. Performance by OSCAR compiler and Hand-tuned Library(AAC)

Fig.9. shows parallel processing performance of the optical flow at RP-X.
The horizontal axis shows the processor configurations. For example, 8SH+4FE
represents for the configuration with eight SH-4A general purpose cores and four
FE-GA accelerator cores. The vertical axis shows the speedup against the se-
quential execution by a SH-4A core. As shown in Fig.9, the proposed framework
achieved speedups of up to 32.65x with 8SH+4FE.

Fig.10. shows parallel processing performance of the AAC at RP-X. As
shown in Fig.10, the proposed framework achieved speedups of up to 16.08x
with 8SH+4FE.

4.4 Evaluation of Power Consumption

This section evaluates a power consumption by using optical flow and AAC
encoding for real-time execution on RP-X. Fig.11 shows the power reduction by
OSCAR compiler’s power control, under the condition satisfying the deadline.
The deadline of the optical flow is set to 33ms for each frame processing so that
standard 30 [frames/sec] for moving picture processing can be achieved. The

minimum number of cores required for the deadline satisfaction of optical flow
calculation is 2SH+1FE. As shown in Fig.11, OSCAR heterogeneous multicore
compiler reduces from 65% to 75% of power consumption for each processor
configuration. Although power consumption is increased by the augmentation of
processor core, the proposed framework reduces the power consumption.

Fig.12 shows the waveforms of power consumption in the case of optical flow
using 8SH+4FE. The horizontal axis and the vertical axis show elapsed time and
a power consumption, respectively. In the Fig.12, the arrow shows a processing
period for one frame, or 33ms. In the case of applying power control(shown in
Fig.12. b), each core executes the calculation by changing the frequency and
the voltage on a chip. As a result, the consumed power ranges 0.3 to 0.7[W]
by OSCAR compiler’s power control. On the contrary, in the case of applying
no power control(shown in Fig.12. a), the consumed power ranges 2.25[W] to
1.75[W].

Fig.13 shows the summary of frequency and voltage status for optical flow
calculation with 8SH+4FE. In this figure, FULL is 648MHz with 1.3V, MID is
324MHz with 1.1V, and LOW is 162MHz with 1.0V. Each box labeled “MID”
and “timer” “Sleep” represents macro-task. As shown in Fig.13., four SAD tasks
are assigned to each FE-GA, and the tasks are executed at MID. All SH-4A core
except “CPU0” is shutdown until the deadline comes. “CPU0” executes “timer”
task for satisfying the deadline. In other words, “CPU0” boot up other SH-4A
cores when the program execution reaches the deadline. Note that FE-GA core
is not shutdown after task execution because DVFS is only applicable.

For AAC program, an audio stream is processed per frame. The deadline
of AAC is set to encode 1 [sec] audio data within 1 [sec]. Fig.14 shows the
waveforms of power consumption in the case of AAC using 8SH+4FE. In the case
of applying power control(shown in Fig.14. b)), each core execute the calculation
by changing the frequency and the voltage on a chip. As a result, the consumed
power ranges 0.4 to 0.55[W]. On the contrary, in the case of applying no power
control(shown in Fig.14. a), the consumed power ranges 1.9[W] to 3.1[W]. In

Without Power Control With Power Control

0

0.5

1.0

1.5

2.0

2SH+1FE 4SH+2FE 8SH+4FE

0.450.46
0.55

1.68
1.63

1.55

-65% -75%-72%

Fig. 11. Power reduction by OSCAR compiler’s power control (Optical Flow)

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000

P
o

w
e

r[
W

]

Time

33[ms]
0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000

P
o

w
e

r
[W

]

Time

33[ms]

a) Without Power Saving(Average:1.68W) b) With Power Saving(Average:0.45W)

Fig. 12. Waveforms of Power Consumption(Optical Flow)

CPU0 CPU1 CPU2 CPU3 CPU FE-GA00 CPU FE-GA11 CPU FE-GA22 CPU FE-GA3

Sleep

Timer

Sleep Sleep Sleep

Sleep SleepSleepMID MID MID MID

0

T
im

e

3

cycle

Sleep

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

Deadline

=1fps

=33ms

FV state example : FULL= 648MHz@1.3V, MID = 324MHz@1.1V, LOW = 162MHz@1.0V

Fig. 13. Power Control for 8SH+4FE(Optical Flow)

summary, the proposed framework realizes the automatically power reduction of
heterogeneous multicore for several applications.

5 Conclusions

This paper has proposed OSCAR heterogeneous multicore compilation frame-
work. In particular, this paper introduces (1)the general purpose and multi-
platform automatic compilation flow using OSCAR compiler and various ac-
celerator compilers or hand-tuned libraries and (2)the heterogeneous extension
of OSCAR multiplatform homogeneous multicore API. In this paper, we have
evaluated the processing performance and the power efficiency of the proposed
framework using RP-X, 15 core heterogeneous multicore chip, as an example.
The developed framework automatically gave us speedups of up to 32x for an

0

0.5

1

1.5

2

2.5

3

3.5

0

P
o

w
e

r
[W

]

Time

0

0.5

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500

P
o

w
e

r
[W

]

Time

a) Without Power Saving(Average:1.9W) b) With Power Saving(Average:0.38W)

0.46[s]

0.46[s]

Fig. 14. Waveforms of Power Consumption(AAC)

optical flow program with eight general purpose processor cores and four accel-
erator cores against sequential execution. Also, it shows 80% of power reduction
by automatic DVFS for the real-time AAC encoding execution mode with eight
general purpose processor cores and four accelerator cores compared with no
power control.

Acknowledgement

This work has been partly supported by the METI/NEDO project “Heteroge-
neous Multicore for Consumer Electronics” and MEXT project “Global COE
Ambient Soc”. Specifications of OSCAR API[5] heterogeneous multicore exten-
sion are developed by NEDO Heterogeneous multicore architecture and API
committee at Waseda university. The authors specially thanks to the members
of the API committee from Fujitsu Laboratory, Hitachi, NEC, Panasonic, Rene-
sas Technology, and Toshiba. The hand-tuned library for FE-GA is provided by
Hariyama Lab. at Tohoku university and Hitachi.

References

1. Bellens, P., Perez, J.M., Badia, R.M., Labarta, J.: Cellss: a programming model
for the cell be architecture. In Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing(SC’06) (2009)

2. Dolbeau, R., Bihan, S., Bodin, F.: Hmpp(tm):a hybrid multi-core parallel program-
mingg environment. In: GPGPU ’07: Proceedings of the 1st Workshop on General
Purpose Processing on Graphics Processing Units (2007)

3. Garland, M., Grand, S.L., Nickolls, J., Anderson, J., Hardwick, J., Morton, S.,
Phillips, E., Zhang, Y., Volkov, V.: Parallel computing experiences with cuda.
IEEE Micro 28(4), 13–27 (2008)

4. Kasahara, H., Obata, M., Ishizaka, K.: Automatic coarse grain task parallel pro-
cessing on smp using openmp. Proc of The 13th International Workship on Lan-
guages and Compilers for Parallel Computing(LCPC2000) (2000)

5. kasahara.cs.waseda.ac.jp: Oscar-api v1.0. http://www.kasahara.cs.waseda.ac.jp/
6. khronos.org: Opencl. http://www.khronos.org/opencl/
7. Kimura, K., Mase, M., Mikami, H., Miyamoto, T., Kasahara, J.S.H.: Oscar api for

real-time low-power multicores nad its performance on multicores and smp servers.
Proc of The 22nd International Workship on Languages and Compilers for Parallel
Computing(LCPC2009) (2009)

8. Luk, C., Hong, S., Kim, H.: Qilin: Exploiting parallelism on heterogeneous mul-
tiprocessors with adaptive mapping, microarchitecture. 2009. MICRO-42. Pro-
ceedings. 42th Annual IEEE/ACM International Symposium on Microarchitecture
(2009)

9. Mase, M., Onozaki, Y., Kimuraa, K., Kasahara, H.: Parallelizable c and its per-
formance on low power high performance multicore processors. In: Proc. of 15th
Workshop on Compilers for Parallel Computing (Jul 2010)

10. opencv.org: Opencv. http://opencv.org/
11. Pham, D., Asano, S., Bolliger, M., Day, M.N., Hofstee, H.P., Johns, C., Kahle,

J., Kameyama, A., Keaty, J., Masubuchi, Y., Riley, M., Shippy, D., Stasiak, D.,
Suzuoki, M., Wang, M., Warnock, J., Weitzel, S., Wendel, D., Yamazaki, T.,
Yazawa, K.: The design and implementation of a first-generation cell processor.
In: 2005 IEEE International Solid-State Circuits Conference, ISSCC (6 February
2005 through 10 February 2005 2005)

12. Shirako, J., Oshiyama, N., Wada, Y., Shikano, H., Kimura, K., Kasahara, H.:
Compiler control power saving scheme for multi core processors. Lecture Notes in
Computer Science 4339 pp. 362–376 (2007)

13. Torii, S., Suzuki, S., Tomonaga, H., Tokue, T., Sakai, J., Suzuki, N., Murakami,
K., Hiraga, T., Shigemoto, K., Tatebe, Y., Obuchi, E., Kayama, N., Edahiro, M.,
Kusano, T., Nishi, N.: A 600mips 120mw 70a leakage triple-cpu mobile application
processor chip. ISSCC (2005)

14. Wada, Y., Hayashi, A., Masuura, T., Shirako, J., Nakano, H., Shikano, H., Kimura,
K., Kasahara, H.: Parallelizing compiler cooperative heterogeneous multicore. In:
Proceedings of Workshop on Software and Hardware Challenges of Manycore Plat-
forms, SHCMP’08 (Jun 2008)

15. Wolfe, M.: Implementing the pgi accelerator model. In: GPGPU ’10: Proceedings
of the 3rd Workshop on General-Purpose Computation on Graphics Processing
Units (2010)

16. Yoshida, Y., Kamei, T., Hayase, K., Shibahara, S., Nishii, O., Hattori, T.,
Hasegawa, A., Takada, M., Irie, N., Uchiyama, K., Odaka, T., Takada, K., Kimura,
K., Kasahara, H.: A 4320mips four-processor core smp/amp with individually man-
aged clock frequency for low power consumption. IEEE International Solid-State
Circuits Conference, ISSCC (Feb 2007)

17. Yuyama, Y., Ito, M., Kiyoshige, Y., Nitta, Y., Matsui, S., Nishii, O., Hasegawa,
A., Ishikawa, M., Yamada, T., Miyakoshi, J., Terada, K., Nojiri, T., Satoh, M.,
Mizuno, H., Uchiyama, K., Wada, Y., Kimura, K., Kasahara, H., Maejima, H.:
A 45nm 37.3gops/w heterogeneous multi-core soc. IEEE International Solid-State
Circuits Conference, ISSCC (Feb 2010)

